Non-LTE stellar parameters and abundances of metal-poor stars in the Galaxy

Rana Ezzeddine (JINA-CEE /MIT postdoctoral fellow)

AstroRana

Photo: Magellan Twin Telescopes credit: Yuri Beletzky

XI

Refresher: What are Metal-poor stars?

- Stellar Archeology: uses stellar relics of the early universe.
- Most metal-poor stars preserve records of "First" Population III stars in their atmospheres

Periodic Ta																		
H: X															He	: Y	/	
3 Li	4 Be			_									5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg						13 Al	14 Si	15 P	16 S	17 Cl	18 Ar						
19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
		* *	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		
											\	י בוד:				<u> </u>		

Astronomers'

With time, more and more <u>of</u> all elements were made!

Refresher: What are Metal-poor stars?

- FeI Nil Fel Fel Metal-poor Fe/HI [Fe/H] < -1Relative Flux Very metal-poor (VMP) -3 < [Fe/H] < -2[Fe/H]=-3. Extremely metal-poor (EMP) [Fe/H]=-5.4 1 -4 < [Fe/H] < -3. 3858 3860 386238643866 3868Ultra metal-poor (UMP) 3856Wavelength [Å] -5 < [Fe/H] < -4
- Hyper metal-poor (HMP)[Fe/H] < -5</p>
- Mega metal-poor (MMP) [Fe/H] < -7 (Keller star 2014)</p>
- Ridiculously metal-poor [Fe/H] < -10</p>

Beers & Christlieb (2005) Frebel (2018) Abundances are not measured BUT determined using approximations:

- Plane-parallel vs. spherical
- Homogeneity
- Stationarity
- Hydrostatic equilibrium
- ●1D vs. 3D atmospheres

• Local thermodynamic equilibrium (LTE)

B. Gustafsson, Astronomical Observatory, Uppsala (2009)

REFRESHER: SPECTRAL LINE FORMATION

-LTE-

- Matter assumed in equilibrium with the radiation field over a finite volume of gas.
- Properties of gas defined by one T at each depth.

REFRESHER: SPECTRAL LINE FORMATION

-LTE ·

- Matter assumed in equilibrium with the radiation field over a finite volume of gas.
- Properties of gas defined by one \boldsymbol{T} at each depth.

Non-LTE

Photons carry non-local information: Everything depends on everything, everywhere else!

LTE

LTE VS NLTE

Rana Ezzeddine, PhD, 2015 FORMATO2.0 (Merle et al. in prep)

LTE

LTE VS NLTE

FORMATO2.0 (Merle et al. in prep)

NON-LOCAL THERMODYNAMIC EQUILIBRIUM EFFECTS

Deviations from LTE increase toward lower metallicities

NLTE EFFECTS : STELLAR PARAMETERS

NLTE EFFECTS : IRON

Departure from LTE can be severe toward the most metal-poor stars!

Ezzeddine et al. (2017)

RANA EZZEDDINE

COOL STARS 20

1/AUGUST/2018

NLTE EFFECTS : IRON

Departure from LTE can be severe toward the most metal-poor stars!

Ezzeddine et al. (2017)

RANA EZZEDDINE

COOL STARS 20

1/AUGUST/2018

NLTE EFFECTS : MG & CA

Sitnova, Ezzeddine et al. (submitted)

RANA EZZEDDINE

NLTE EFFECTS : MG & CA

Sitnova, Ezzeddine et al. (submitted)

Agreement between Ca I and Ca II in NLTE vs. LTE in UMP stars! This highlights that NLTE works for extreme cases as well as less metal-poor stars!

TAKE AWAY POINTS

- Stellar abundances are only as good as our models
- Departures from LTE abundances in metal-poor stars can be severe
- Accurate modeling of atmospheres in iron-poor stars (NLTE) is important. Ignoring NLTE effects can:
 - overestimate $T_{\rm eff}$ ~ 50- 600 K
 - underestimate log g ~ 0.2 1 dex
 - underestimate [Fe/H] $\sim 0.2 1.0$ dex
 - underestimate [Mg/H] up to 0.5 dex
 - underestimates [Ca/H] from Ca II lines up to 0.5 dex
- NLTE effects important to include in abundance determinations of large samples, i.e, large spectroscopic surveys. Possible with our new dense NLTE metal-poor abundance grid! If interested, talk to me on coffee break :)

STELLAR ATMOSPHERES ASSUMPTIONS : IS 1D OKAY VS 3D?

stobgm J4n26. Surface Intensity(11), time(0.0)=30.263 yrs

Matthias Steffen 3D COBOLD simulations

3D important for CNO elements : large 3D effects

STELLAR ATMOSPHERES ASSUMPTIONS : IS 1D OKAY VS 3D?

Amarsi et al. (2016)

NLTE

LTE

1D, NLTE better than 3D, LTE!