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Figure 2 | Surface images of ζ And from September 2013 with fourteen 
nights of data using SURFING. a and b are presented as in Fig. 1, except 
that the 200-K contours of the Aitoff projection (a) range from 3,600 K to 
4,600 K. The polar spot is observed to have evolved between the two sets of 

observations. The lower-latitude spots present in the 2011 data set are not 
present in the 2013 data set, with the new spots located mostly below the 
equator, emphasizing the spot-latitude asymmetry observed.

advances in visible interferometry will allow for similar resolution on 
more stars (down to θ ≈ 1.1 mas). For stars that cannot be resolved in 
detail, combining interferometrically observed photocentre shifts due 
to rotation of starspots in and out of view with Doppler imaging would 
resolve the degeneracies inherent in the Doppler images, allowing for 
more accurate surface maps. By acquiring a number of these maps on 
several stars or a few observation epochs of the same targets, we could 
investigate how the changing magnetic field affects our determinations 
of stellar parameters (including mass and age)3,26. In addition, the 
development of new dynamo models would shed light on the impact 
of magnetism on stellar evolution27,28.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Figure 4. Top: orthographic projections of the model star, with an inclination of 32�, and the best-fit positions for two circular spots for
the 5 day time window starting at BJD - 2454833.11567 = 508.1 days (left) and 815.6 (right). The direction of stellar rotation is indicated
by the black arrow. Bottom: phase-folded light curve for the data in the same 5 day time windows, with the best-fit two-spot models
overlaid (blue solid line), and the contributions from both the higher latitude (orange dashed line) and equatorial (purple dashed line)
starspots o↵set for clarity.

Davenport+ 2015

Fig. 7.— As in Figure 6 for Tspot = 2800 K (top), Tspot = 2700 K (bottom) with limb darkening reduced by
10% with a linear centre-to-limb scaling (bottom).
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ential rotation, bands of coherent toroidal field may arise.
For example, the simulations of Yadav et al. (2015a) or
Browning (2008) both yield toroidal fields that exceed 10
kG (and are greater than the associated poloidal fields),
despite the weak zonal flows. Because the convection is
comparatively weak in M-dwarfs, and rotation is often
relatively rapid, even modest angular velocity contrasts
of ∆Ω/Ω ∼ 10−3 can still yield a considerable influence
on the dynamo. Turning to the simulations of Nelson
et al. (2011, 2013) as a qualitative guide, we might expect
that pushing the simulations to even lower values of diffu-
sivity (and commensurately more turbulent flows) would
result in toroidal fields with stronger portions, even if the
mean level of magnetic energy were not greatly changed.
The strongest of these fields must feel the effects of mag-
netic buoyancy, and so begin to rise.
The journey of magnetic fields from their region of gen-

eration to the stellar surface is complex. Often the flux
tube model is adopted to describe the dynamic evolution
of magnetic field bundles. A rich body of work applying
the flux tube model in the Solar context has provided im-
portant insight into the flux emergence process. These
simulations have been performed in both horizontal and
spherical geometries, utilizing either a fully 3D MHD ap-
proach or the effectively 1D TFT approximation (for a
comprehensive review, see e.g. Fan 2009).
Thin flux tube calculations have been useful in under-

standing the mechanisms driving the observed proper-
ties of Solar active regions. They have been particularly
helpful in elucidating the role that Coriolis force plays in
determining the latitude of emergence (e.g. Choudhuri
1989; Fan et al. 1993; Caligari et al. 1995), tilt of the ac-
tive region toward the equator (e.g. D’Silva & Choudhuri
1993; Caligari et al. 1995), and morphological (e.g. Fan
et al. 1993; Caligari et al. 1998) and geometrical (e.g.
Moreno-Insertis et al. 1994; Caligari et al. 1995) asym-
metries. Unlike TFT simulations, flux tube simulations
of the 3D variety can resolve the cross-section of the tube
and twist of the internal magnetic field lines. These sim-
ulations also capture the back-reaction of the magnetic
structures on the surrounding plasma and the possible
shredding of the flux tube by convection (e.g. Fan et al.
2003; Abbett et al. 2004; Jouve & Brun 2009; Pinto &
Brun 2013). However, due to the limited numerical reso-
lution and relatively high imposed magnetic diffusion of
such 3D models, tubes with strong super-equipartition
magnetic field strength and large radii are typically re-
quired, corresponding to a total flux often larger than ob-
served active regions on the Sun (i.e. ! 1023 Mx). Note,
though, that the radii of flux tubes in some 3D models,
for instance Fan (2008) and Jouve & Brun (2009), are
only ∼3 times larger than in the simulations we present
here (see Sec. 2.2).
Although flux tube models cannot address the self-

consistent formation of magnetic field bundles, they are
nonetheless instructive. In particular, they allow the flex-
ibility of prescribing initial conditions both of the flux
tube and the external environment to explore a vari-
ety of possible situations that may be realized in stars.
Weber et al. (2011, 2013b); Weber & Fan (2015) exam-
ine the effect Solar-like convection has on the local and
global evolution of magnetic flux tubes while circumvent-
ing the problem of artificial diffusion by employing the
TFT model in a hydrodynamic convection simulation.

While idealized, these simulations complement the re-
sults of both 3D MHD flux tube simulations and those
of the buoyantly rising loops generated through dynamo
action as in Nelson et al. (2014). Namely, they show
that both magnetic buoyancy and convection contribute
to the flux emergence process, acting in concert to repli-
cate the observed properties of Solar active regions. Ad-
ditionally, as the TFT model is a 1D code, simulations of
individual flux tubes may be performed quickly on single
processor machines, much faster than 3D simulations re-
quiring millions of processor hours on massively parallel
supercomputers.
Inspired by the growing number of observations of fully

convective stars and encouraged by the results obtained
from previous TFT simulations, we turn here to simula-
tions of thin flux tubes embedded in fluid motions repre-
sentative of a fully convective star. Our aim is to investi-
gate whether toroidal fields built in the bulk of the con-
vection zone could potentially give rise to the starspots
observed on fully convective M-dwarfs. Our approach
adopts a number of simplistic assumptions: most sig-
nificantly, we have assumed that the dynamo generated
magnetic field produces coherent, toroidal tubes of field.
The traditional TFT model assumes that this magnetic
field is generated by an interface dynamo at the boundary
of the radiative interior and convective envelope. Here,
in effect we assume that a distributed dynamo is capable
of building toroidal flux tubes as well.
In Section 2, we introduce our model and initial flux

tube conditions. Section 3 describes the evolution of ax-
isymmetric flux tubes in a quiescent interior, both ini-
tially in temperature equilibrium (Sections 3.1-3.2) and
in comparison to those in mechanical equilibrium (Sec-
tion 3.3). We present the results of our TFT simula-
tions embedded in a hydrodynamic convective flow field
in Section 4, focusing on the latitude of emergence and
the effect of differential rotation in Section 4.2, and the
efficiency of magnetic pumping in Section 4.3. We con-
clude and reflect on our results in Section 5.

2. FORMULATING THE PROBLEM

2.1. Modeling Fibril Magnetic Fields

The dynamics of thin, isolated magnetic flux tubes can
be described by invoking the thin flux tube (TFT) ap-
proximation (e.g. Roberts &Webb 1978; Ferriz-Mas et al.
1989; Spruit 1981). The TFT equations are derived from
ideal MHD, operating under the assumption that all vari-
ables are constant over the cross-sectional radius a of the
flux tube. Consequently, the set of equations is reduced
to one spatial dimension, with all quantities represented
by their values along the flux tube axis. The equations
that describe the evolution of each Lagrangian element
of the 1D flux tube are as follows:

ρ
dv

dt
=−2ρ(Ω0 × v)− (ρe − ρ)g + l

∂

∂s

(

B2

8π

)

+
B2

4π
k

−Cd
ρe|(v − ve)⊥|(v − ve)⊥

(πΦ/B)1/2
, (1)

Equation of Motion:

Sun 0.3M¤ M Dwarf

Figure 2.2. Snapshots of ASH convective radial velocities (left) at a depth of
25 Mm below the solar surface in an orthographic projection, and (right) at a
depth of 23 Mm in a Mollweide projection with the dotted line representing the
solar radius r = R⊙. Strong downflow lanes (blue/purple) at the boundary of
giant convective cells surround upflow regions (yellow). Also known as banana
cells, the structures at low latitudes are rotationally aligned and propagate
prograde.

lowest 2/3 of modes (maximum spherical harmonic degree ℓmax = 170 and Chebyshev degree

nmax = 86). Similar to Case AB3 in Miesch, Brun, and Toomre (2006), a latitudinal entropy

gradient is imposed on the lower boundary in order to implicitly capture thermal coupling

to the tachocline: S(θ, r1) = cp (a2Y20 + a4Y40), where S is the specific entropy per unit

mass, r1 is the inner boundary, cp is the specific heat at constant pressure, Yℓm(θ,φ) is the

spherical harmonic of degree ℓ and order m, a2 = 1.7 × 10−6, and a4 = −0.43 × 10−6. This

helps promote a conical rotation profile. The radial entropy gradient imposed at the outer

boundary is steeper, more in line with solar structure models (e.g. Christensen-Dalsgaard

et al. 1996); ∂S/∂r = −10−5 erg g−1 K−1 cm−1 in this case compared to −10−7 erg g−1 K−1

cm−1 in Case AB3.

Figure 2.2 shows snapshots of the radial velocity of the giant-cell convection at depths

of 25 and 23 Mm below the solar surface, respectively. The convective flow pattern shows

broad upflow cells surrounded by narrow and intense downflow lanes, with a convective
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slow magnetic diffusion time [! ! L2/("2#) ! 4400 days] than
of the faster convective overturning time.

The overall polarity of the fields is remarkably stable. Over
the roughly 25 yr that we have evolved simulation Cm after its
magnetic energy equilibrated, the field near the surface has re-
versed its polarity—which we define as the sign of Br integrated
over a surface in the northern hemisphere (see BMT04)—only
once. This stability is in marked contrast to the frequent polarity
reversals found in simulations of the solar convective envelope
without a tachocline (BMT04).

6. ESTABLISHMENT AND QUENCHING
OF DIFFERENTIAL ROTATION

Our hydrodynamical calculations (cases A, B, and C) begin
in a state of uniform rotation. In all of them, however, convec-
tion quickly acts to redistribute angular momentum, ultimately
establishing interior rotation profiles that vary with radius and
latitude. The resulting differential rotation is partly akin to that
observed at the solar surface, in that the equator rotates more rap-
idly than the poles; unlike the bulk of the solar convection zone,
our simulations also exhibit substantial radial angular velocity
contrasts, with the outer regions rotating more rapidly than the
interior.

This differential rotation is assessed for the hydrodynamic
case C in Figure 8. Shown as a contour plot is the longitudinal
velocity v̂$, averaged in time and in longitude; rapidly rotating
regions are reddish, and slower ones are bluish, all shown rela-
tive to the rotating frame. Figure 8b also shows the angular ve-
locity !̂ as a function of radius along selected latitudinal cuts.
There we can see that at the surface, the overall angular velocity
contrast between the equator and 60" latitude is about 90 nHz,
implying"!/! # 22%. This is comparable to the solar angular
velocity contrast "!/! # 0:25. As in the Sun, the angular ve-
locity decreases monotonically from equator to pole. Figure 8b
also reveals that !̂ generally decreases with depth, with the equa-
tor rotating about 125 nHz faster at the top of the domain than
at the bottom. Turning to the contour plot of v̂$, we see that the
interior rotation profile is nearly constant on cylindrical lines
parallel to the rotation axis. This is in keeping with the strong
Taylor-Proudman constraint felt by the flows, which are heavily
influenced by rotation. The angular velocity contrasts in radius

and latitude are smaller in our more laminar cases A and B, but
the sense of the differential rotation is the same. We have tabu-
lated in Table 2 the contrast from equator to 60" for each of these
simulations.
The building of differential rotation by the rotating convec-

tive flows is not unexpected. As convective parcels rise and fall,
they may be turned by Coriolis forces, yielding correlations be-
tween vr and v$ whose effect is to transport angular momentum
outward. If, on the other hand, Coriolis forces are weak (relative
to buoyancy driving and pressure forces), outward-moving flows
may simply tend individually to conserve angular momentum,
implying an angular velocity that decreases with radius (e.g.,
Gilman&Foukal 1979). The convection in ourmodels is strongly
influenced by rotation, as quantified for instance by the Rossby
number Ro ¼ ũ /(L!) or the convective Rossby number Roc ¼
½Ra/(Ta Pr )&1=2. The first of these roughly measures the strength
of the Coriolis terms in equation (3) relative to the inertial ones,
while the second estimates the influence of rotation compared
to buoyancy driving. These are tabulated for our simulations
in Table 1. In prior studies of nonlinear convection in rotating
spherical shells (Gilman 1978, 1979; Brun & Toomre 2002), a
general finding has been that equatorial acceleration is realized
whenever Roc is less than unity, with Coriolis forces therefore
large. When Roc is large, conversely, the equatorial regions tend
to rotate slower than the poles. Under strong rotational influences,
angular momentum transport by the convection tends to be radi-
ally outward and latitudinally toward the equator (e.g., Brun &
Toomre 2002). The analogy in deeper spherical domains appears
to be the acceleration of columns of fluid that lie far from the
rotation axis, as realized here and in the core convection simu-
lations of Browning et al. (2004). Angular momentum is glob-
ally conserved in ourmodels, so as these regions speed up, others
near the rotation axis must slow down.
The interior rotation profiles are quite different in our calcu-

lations with magnetism. Intuitively, one expects that strong mag-
netic fields might act like rubber bands, tying separate regions
together and helping to enforce solid-body rotation. Although
this analogy is simplistic, given the complex spatial and temporal
structure of themagnetic fields realized here, the expectation that
magnetism should lessen angular velocity contrasts turns out to
be correct. In our MHD simulations, the magnetic fields react

Fig. 7.—Azimuthally averagedB$ as contour plots in radius and latitude at three instants in the evolution of case Cm. The three renderings sample (a) a time prior to the
saturation of the volume-averaged magnetic energy density, and times roughly (b) 8500 and (c) 11,000 days later. Polarity is indicated by the color map, with reddish tones
positive (prograde polarity) and bluish tones negative (retrograde).
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Fig. 2.—Toroidal magnetic fields realized in the convective envelope and underlying radiative region. Mollweide projections at one instant of longitudinal field
on a spherical surface at (a) middepth in the convection zone ( ) and (b) in the stable zone ( ). (c) Contours in radius and latitude ofB r p 0.84 R r p 0.67 Rf , ,

averaged in time (over an interval of 220 days) and in longitude. Field strengths are in units of gauss.Bf

Fig. 3.—Temporal evolution and spatial distribution of axisymmetric toroidal
magnetic fields. Variation with radius and time of at a latitude of !30!, withBf

tall peaks corresponding to large positive amplitudes. The strongest fields are
realized in the stable region ( ), where the polarity of the fields isr/R ! 0.73,

also remarkably stable over the 2500 days sampled here.

amplified, with strong fluctuating magnetic fields (∼3000 G
rms) and weaker mean toroidal and poloidal fields (of time-
averaged strengths ≤300 G) achieved within the bulk of the
convection zone. Over the 2800 simulated days (about 100
rotation periods) studied after the field strengths have largely
equilibrated, the dynamo action is persistent, with overall mag-
netic energy sustained at about 40% of the convective kinetic
energy. Figure 2a shows a snapshot of the longitudinal field
at middepth ( ), revealing complex structure onB r p 0.84 Rf ,

many scales, with no evident polarity preferences. The radial
and latitudinal fields and also possess intricate and highlyB Br v

variable structures, tracing the convective flow realized in the
bulk of the convection zone. In the underlying stable region
(at ), Figure 2b shows that the magnetic field hasr p 0.67 R,

been decidedly organized by the rotational shear, with the lon-
gitudinal field there stretched into large toroidal structures that
extend around much of the domain. Equally striking is that
fields show antisymmetric parity in the stable region, withBf

opposite signs to those in the northern and southern hemi-
spheres. The organized nature of strong toroidal fields in the
stable region is confirmed in Figure 2c showing the time-
averaged axisymmetric . Here the opposite polarities of theBf

mean toroidal fields are evident in the two hemispheres, as
contrasted to the weak and patchy mixed-polarity structures
within the convection zone. The time-averaged axisymmetric
fields in the stable region attain strengths of order 3000 G, or

about 10 times stronger than the mean in the convectionBf

zone. Whereas fluctuating (nonaxisymmetric) fields dominate
in the convection zone, the magnetic energy in the mean to-
roidal field is about 3 times larger than the fluctuating magnetic
energy within the tachocline. The strong toroidal field estab-
lished in the stable region is accompanied by a largely dipolar
poloidal field.
Neither the organization of the magnetic field below the con-

vection zone into predominantly axisymmetric toroidal fields, nor
the strong parity selection exhibited here, appear to be transient
effects. These attributes arose rather quickly (∼200 days) after the
introduction of the forced tachocline and have persisted for as long
as we have continued the calculations. A sense of the evolution
and spatial distribution of the mean fields in our simulation is
provided by Figure 3, which shows the radial and temporal var-
iations of the axisymmetric toroidal field sampled at latitudeBf

!30!. The strongest toroidal fields there are clearly attained in the
stable region ( ), with some modulations in amplituder/R ! 0.73,

but no changes in polarity. Within the convection zone, both the
strength and polarity of the weaker toroidal field aremore variable.
Further investigation reveals that the axisymmetric dipole field in
both the convection zone and the stable region has not changed
its overall polarity during the course of our simulation. This is in
sharp contrast to the evolution of the mean dipole component in
BMT04, which considered the convection zone in isolation, where
the dipole flipped at irregular intervals of less than 600 days. This
suggests that the presence of a reservoir of strong toroidal fields
with persistent polarity in the stable region is serving to stabilize
the mean poloidal field realized in the convection zone.

4. BUILDING STRONG TOROIDAL FIELDS

The predominantly axisymmetric nature of the magnetic
fields in the stable region may be understood in two comple-
mentary ways. First, the lack of significant nonaxisymmetric
motions there precludes the generation of strong fluctuating
fields like those realized in the convection zone. Thus, non-
axisymmetric (fluctuating) fields must either diffuse in from
the convection zone or be transported downward by over-
shooting motions. Second, Spruit (1999) has argued that any
such fluctuating fields will, in the presence of well-defined
angular velocity gradients, be quickly expelled from the system
through reconnection between neighboring magnetic surfaces.
He estimates that this process acts on a timescale t ∼Q

, with q a measure of the rotational shear. In2 2 2 2 1/3(3r p /hQ q )
the Sun, this estimate yields timescales of order 100 years, but
in our far more diffusive simulation, is about a year. Thus,tQ

Browning+ 2006

Model Schematic:
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Convection modulates flux emergence
The Astrophysical Journal, 762:73 (20pp), 2013 January 10 Nelson et al.

(a) (b) (c)

Figure 18. Buoyant magnetic loops evolving from small-scale wreath sections amplified by turbulent intermittency. (a) Field line rendering of magnetic wreaths at
low latitudes in case S3. Field lines are colored by Bφ (negative in blue, positive in red) to highlight the two wreaths present. (b) Zoom-in on region indicated in (a)
showing field line tracings of the core of the buoyant magnetic loops at the same instant colored by magnitude of B (weak fields in purple, intense fields in yellow).
Volume rendering shows Bφ using the same color scheme as in (a). (c) The same region 4 days later, showing the continued rise of the loops through the stratified
domain and their expansion.
(A color version of this figure is available in the online journal.)

et al. 2012; Kemel et al. 2012), although it does not necessarily
rely on the assumptions that underlie that instability analysis,
namely, scale separation, the invariance of the small-scale tur-
bulent energy, and the proportionality between variations in the
mean and turbulent magnetic energy (attributed to kinematic
shredding).

The radial location of the flux bundles that ultimately form
active regions depends on the kinetic energy density in the
convection (FKE) relative to that in the differential rotation
(DRKE), as well as the efficiency of magnetic pumping. In the
simulations presented here, DRKE/FKE ! 1, suggesting that
the generation of the wreaths is efficient enough that they can
persist in the convection zone despite magnetic pumping. If this
ratio falls much below unity, as might be expected for lower
rotation rates, the wreaths may get pushed toward the base of
the convection zone. Likewise, if the simulations are over- or
underestimating the efficiency of magnetic pumping, this will
influence the location of flux generation and the threshold to
trigger the magnetic buoyancy instability. However, the basic
paradigm should still be valid.

The scenario outlined here may resolve several current
observational and theoretical puzzles. In particular, the non-
axisymmetric nature of turbulence-induced flux emergence is
consistent with the results of Stenflo & Kosovichev (2012) who
find that many large bipolar active regions on the Sun violate
Hale’s polarity rules, and furthermore, that the anti-Hale regions
often occur at the same latitude as bipoles that obey Hale’s
rules. The fraction of anti-Hale magnetic regions increases from
about 4% for the largest active regions (flux Φ ! 1023 Mx)
to more than 25% for smaller bipoles with Φ ∼ 1020 Mx.
The result that more than 70% of intermediate-sized bipoles
(Φ ∼ 1020 Mx) obey Hale’s laws suggests the presence of
organized toroidal flux systems throughout the convection zone
since all of these regions are unlikely to be anchored in the
tachocline. Meanwhile, the diminishing of magnetic activity
patterns with decreasing flux, including an increasing fraction
of anti-Hale bipoles as well as an increased scatter in tilt angles
and emergence latitudes, is often attributed to the influence of
convection on rising flux tubes (Jouve & Brun 2009; Weber et al.
2011, 2012; Jouve et al. 2013). We propose that this intimate
coupling between flux tubes and convection exists not only in
their rise, but also in their very formation. Finally, the non-

axisymmetric nature of turbulence-induced flux emergence may
also account for the phenomenon of active longitudes.

The observed tilt angles and emergence latitudes of bipolar
magnetic regions on the Sun is best reproduced by models of
rising flux tubes with initial field strengths of 20–100 kG (e.g.,
Fan 2009; Jouve & Brun 2009; Weber et al. 2011; Pinto et al.
2011). However, generating such superequipartition fields is not
a trivial matter and in fact represents a formidable, unresolved
problem in solar dynamo theory (e.g., Rempel & Schüssler
2001). Laminar amplification of toroidal fields by rotational
shear, the Ω-effect, tends to saturate at field strengths well
below equipartition due to the back-reaction of the Lorentz
force (Vasil & Brummell 2009; Guerrero & Käpylä 2011).
Turbulent intermittency can help by tapping the energy in the
convection that is ultimately provided by the solar luminosity.
It is clear from Figure 2 that the coupled action of turbulence
and shear can generate superequipartition fields of the required
amplitude.

The paradigm proposed here may also help address
other difficulties with tachocline-based dynamos discussed by
Brandenburg (2005). For example, toroidal flux generation does
not rely on the radial shear of the tachocline, which is maximum
near the poles. Instead, the expected location of flux genera-
tion is where |∇Ω| is maximum in the convection zone. This
corresponds to the latitudinal shear at mid-latitudes, precisely
where active regions first emerge at the beginning of a cycle, as
emphasized by Spruit (2010). Note that the potential role flux
emergence plays in establishing the solar cycle is a separate
question that we do not address here.

8. RICHNESS OF STELLAR DYNAMOS

In this paper we have explored the complex behavior of a
class of numerical simulations of convective dynamo action
in rapidly rotating solar-like stars. More broadly, however,
we have also touched upon the rich landscape of convective
dynamo simulations by discussing both persistent wreath-
building dynamos such as cases D3 and D3-pm1, and cyclic
wreath-building dynamos including cases D3a, D3b, D3-pm2,
and S3. Although the simulations considered here are ostensibly
rotating three times faster than the Sun (3 Ω⊙), the Sun may
actually be in a similar Rossby number regime, as noted in
Section 1. Thus the results presented here may have some
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Figure 8 (a) Histogram of twist rate parameter [qJ ]values for the 131 loops observed in Cycle 1 along
with the best-fit Gaussian distribution of those values. The distribution shows a slight preference for negative
twist rates, although the mean twist rate is (−1.8 ± 2.4)× 10−11 cm−1. (b) Histogram of latitudinal tilt [!θ]
values for the same 131 loops. Positive tilts indicate that the leading edge of the loop is closer to the Equator
than the trailing edge, as with Joy’s law. Tilts were calculated so that all values fall between ±90◦ for this
analysis. Positive tilts are preferred and the mean latitudinal tilt is 7.3 ± 12.6◦ in latitude.

a combination of small-scale turbulent advection and shear. Eventually, diffusive reconnec-
tion realigns the fields so that the loops are no longer distinct from the surrounding MHD
turbulence.

4.2. Statistical Distribution of Twist and Tilt

Previous MHD simulations of flux emergence have emphasized that magnetic structures
must be twisted to remain coherent as they rise (see review by Fan, 2009). Twist in this
context can be defined by a parameter qA, which for a uniformly twisted flux tube is defined
by

B∥ = a± qAλ|∇ × A∥|, (1)

where B∥ and A∥ are the magnetic field and magnetic vector potential along the axis of the
flux tube, a± is 1 in the northern hemisphere and −1 in the southern hemisphere, and λ

is the distance from the axis of the flux tube. For the tube to remain coherent as it rises,
previous numerical simulations have suggested that twist must exceed some critical value
QA (Moreno-Insertis and Emonet, 1996). Fan (2008) used 3D simulations of buoyant mag-
netic structures rising through a quiescent, stratified layer and found a critical level of twist
QA ≈ −3 × 10−10 cm−1.

For our simulation, the loops are clearly not uniformly twisted flux tubes, so we cal-
culated another measure of twist following the procedure used in observational stud-
ies (e.g. Pevtsov, Canfield, and Metcalf, 1995; Pevtsov, Maleev, and Longcope, 2003;
Tiwari, Venkatakrishnan, and Sankarasubramanian, 2009). Sunspots often show large vari-
ations in the level and even sign of twist, so a weighted average of the twist parameter is
employed, which we call qJ . We computed the twist parameter as

qJ = a±

[
Jφ

Bφ

]
, (2)

where brackets denote an average over radius and latitude for a longitudinal cut taken
through the loop, and a± is 1 in the northern hemisphere and −1 in the southern hemi-
sphere. We restricted our averages to contiguous regions with the correct polarity and to
those where fields are stronger than 2.5 kG. Figure 8(a) shows a histogram of values for the
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Convection can also suppress flux emergence
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Fully convective M dwarf

• The global rise of TFTs is more strongly suppressed by 
convective flows when the flux tube is initiated: 
• in the deeper interior
• at lower latitudes
• with a weaker magnetic field strength
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Rotation alters emergence properties
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• Due to the Coriolis force, more rapid rotation:
• Lengthens the rise time
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• Increases tilt angles
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Figure 7.5. Tilt angles plotted as a function of emergence latitude for flux
tube simulations of five different initial magnetic field strengths in a star ro-
tating at five times the current solar rate. The best-fit line to the tilt angles
is also plotted, with the slopes of these best-fit lines shown in Table 7.1. Tilt
angles increase significantly as magnetic field strength decreases.

Table 7.1. Slopes mB of the best-fit line following Method 2 for flux tubes
of 1022 Mx that evolve in a star rotating at five times the current solar rate.
The slope increases as the magnetic field strength decreases, a result of the
poleward deflection of flux tubes at lower magnetic field strengths.

B mB

500 kG 12.1◦ ± 1.1◦

400 kG 14.7◦ ± 1.8◦

300 kG 23.9◦ ± 1.9◦

200 kG 33.4◦ ± 2.2◦

150 kG 39.9◦ ± 3.0◦

TFT+ASH model, the ASH convection simulation as well as the solar structure model can

be easily swapped out and replaced. The simulation results presented in this Section actually

raise more questions than answers about the nature of flux emergence in the young Sun and

other solar-like rapid rotators. We hope to expand on the preliminary study in this Section

199

Sun, 5Ω⨀

Tilt Angles

based on Weber+ 2013 

Weber Thesis 2014 

Figure 2.2. Snapshots of ASH convective radial velocities (left) at a depth of
25 Mm below the solar surface in an orthographic projection, and (right) at a
depth of 23 Mm in a Mollweide projection with the dotted line representing the
solar radius r = R⊙. Strong downflow lanes (blue/purple) at the boundary of
giant convective cells surround upflow regions (yellow). Also known as banana
cells, the structures at low latitudes are rotationally aligned and propagate
prograde.

lowest 2/3 of modes (maximum spherical harmonic degree ℓmax = 170 and Chebyshev degree

nmax = 86). Similar to Case AB3 in Miesch, Brun, and Toomre (2006), a latitudinal entropy

gradient is imposed on the lower boundary in order to implicitly capture thermal coupling

to the tachocline: S(θ, r1) = cp (a2Y20 + a4Y40), where S is the specific entropy per unit

mass, r1 is the inner boundary, cp is the specific heat at constant pressure, Yℓm(θ,φ) is the

spherical harmonic of degree ℓ and order m, a2 = 1.7 × 10−6, and a4 = −0.43 × 10−6. This

helps promote a conical rotation profile. The radial entropy gradient imposed at the outer

boundary is steeper, more in line with solar structure models (e.g. Christensen-Dalsgaard

et al. 1996); ∂S/∂r = −10−5 erg g−1 K−1 cm−1 in this case compared to −10−7 erg g−1 K−1

cm−1 in Case AB3.

Figure 2.2 shows snapshots of the radial velocity of the giant-cell convection at depths

of 25 and 23 Mm below the solar surface, respectively. The convective flow pattern shows

broad upflow cells surrounded by narrow and intense downflow lanes, with a convective

50

helioseismology without significantly changing either the over-
all! contrast with latitude or the convective patterns. We expect
similar behavior here, as briefly explored by Ballot et al. (2007),
but we have not explored this issue in detail at the higher rota-
tion rates. More rapidly rotating suns may very well also possess
tachoclines, but at this stage there is no observational evidence of
this. Thus, we have simplified these simulations by imposing an
entropy gradient that is constant in latitude at the bottom bound-
ary. Our contours of ! in Figure 3 show some differences be-
tween the northern and southern hemispheres, particularly at higher
latitudes, and these differences decrease with more rapid rotation.

The patterns of convection are not simply symmetric about the
equator, and thus the accompanying mean zonal flows can be
expected to show some variations between the two hemispheres.
Also shown are radial cuts of ! at six fixed latitudes that make
evident the angular velocity contrasts with radius and latitude
achieved in these simulations. The absolute contrast in latitude
and radius clearly grows with rotation rate and will be discussed
in x 4.

A striking result of our simulations is the emergence of per-
sistent, spatially modulated convection in the equatorial regions
at high rotation rates. At these low latitudes, convection becomes

Fig. 3.—Radial velocity patterns in Mollweide projection at 0.95 R! (left ) and differential rotation profiles (middle, right ) with increasing rotation rate in (a, e) case
G1, (b, f ) case G3, (c, g) case G5, and (d, h) case G10. At higher rotation rates, the horizontal scale of convective cells shrinks at all latitudes and cells are more strongly
aligned with the rotation axis. A striking pattern of modulated convection emerges at low latitudes with faster rotation, consisting of spatially modulated or patchy
convection. These active nests of convection are propagating structures that persist for long periods of time. Profiles of the mean angular velocity ! with radius and
latitude are shown in the middle. These differential rotation profiles all involve fast equators ( prograde relative to the frame rate !0, indicated by the tick mark on the
scale) and a monotonic decrease of ! as the poles are approached. Radial cuts of the angular velocity at selected latitudes, as labeled, are shown on the right. The black
dashed contour denotes the constant propagation rate of the nests, where discernible.

RAPID ROTATION AND MODULATED CONVECTION 1359No. 2, 2008

Brown+ 2008 
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Stellar structure impacts emergence latitudes and more 
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Fig. 1.— 30 kG flux tubes initiated at θ0 = 6◦, corresponding to Case TLfC (ensemble 3)

in Weber & Browning 2016. The flux tube initial configuration is show in red, and once
reaching the simulation upper boundary in black. The azimuthal axis has been rotated so

the apex of the tube at the upper boundary is on the right-hand side. Upper and lower
mesh spheres represent 0.95R and the initial radius r0 of the flux tube, respectively. (Left)

initiated at 0.5R, (Center) initiated at 0.75R, (Right) same as center image, except the flux
tube is not given a cross-sectional extent.

Fig. 2.— 100 kG flux tubes initiated at θ0 = 5◦ in temperature equilibrium and co-rotating

with the star (Ω=2.6×10−6 rad s−1). Upper and lower mesh spheres represent 0.95R and
the base of the convection zone, respectively. (Left) 0.4M⊙, (Center) 0.5M⊙, (Right) 0.6M⊙.
Evolution of the 30 kG flux tubes are similar in trajectory.

– 2 –

Fig. 3.— Flux tubes initiated at θ0 = 5◦ in mechanical force equilibrium. The azimuthal
axis has been rotated so the apex of the tube at the upper boundary is on the right-hand
side. Upper and lower mesh spheres represent 0.95R and the base of the convection zone,

respectively. (Top) 30 kG flux tubes, (Bottom) 100 kG flux tubes. (Left) 0.4M⊙, (Center)
0.5M⊙, (Right) 0.6M⊙. All 100 kG tubes shown here have developed one buoyant loop. The

30 kG flux tubes develop one buoyant loop in the 0.4M⊙ star, and two loops in the 0.5 and
0.6M⊙. It is likely that convective motions will modulate the shape of especially the 30 kG
flux tubes, removing any preference for these low order m=1 and m=2 unstable modes (i.e.

the number of buoyant loops will be determined by the nature of the convection rather than
the preferred buoyancy instabilities). Questions: Is there a significant (observable) difference

in emergence pattern depending on whether tubes initiate in temperature equilibrium versus
mechanical force equilibrium? Will convective motions normalize this effect or amplify it?

What about rotation rate?
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Figure 3. (a) Meridional plot of the longitudinal velocity v̂φ for
the fast differential rotation profile, averaged over ∼ 460 days with
contour intervals every 10 m s−1 around zero relative to the rotat-
ing frame. Dashed lines are at radii of 0.5R and 0.75R. (b) Angular
velocity Ω̂ averaged over the same time interval as a function of ra-
dius along indicated latitudinal cuts for the fast (∆Ω/Ω0 ∼ 22%)
differential rotation profile, and the slow (∆Ω/Ω0 ∼ 2%) differen-
tial rotation profile approximated using Equation 8.

here allows for more direct comparison between TFT
simulations, removing any effects that may arise because
of stochastic variations in the radial vr and latitudinal
vθ velocity fields. Figure 3b shows the angular veloc-
ity Ω̂ (nHz) from the original ASH hydrodynamic case
as a function of radius for latitudinal cuts at 0◦, 45◦,
and 60◦. Shown on the same plot is the angular ve-
locity Ω̂ approximated using Equation 8 for a contrast of
∆Ω/Ω0∼2%. This simplistic approach creates a differen-
tial rotation profile very similar to Case Cm in Browning
(2008) with the same angular velocity contrast of ∼ 2%,
where the presence of equipartition-strength magnetic
fields quenches the differential rotation. The presence
of magnetic fields in Case Cm does affect the distribu-
tion of angular momentum. However, we note that the
amplitudes of vr shown in Figure 2 are commensurate
with Case Cm in Browning (2008). Furthermore, both
the hydrodynamic simulation we use here and Case Cm
exhibit a similar pattern of convective cells, including
a hierarchy and alignment of convective structures with
the rotation axis and isotropic cells near the poles.
In order to sample different intervals of the time-

varying velocity field, we perform three ensemble sim-
ulations. Flux tubes in each ensemble are initialized at
the same moment and are advected by the exact same
time-varying flow field, but evolve independently of each
other. Each ensemble is then comprised of 1176 flux
tubes, one tube for each of the possible combinations of
B0, θ0, r0, and applied differential rotation profile. This
equates to a total number of 3528 flux tubes analyzed
in this study that evolve with the effects of convection.
The initialization times for each of the three different
ensembles are arbitrary, but are at least separated by
∼200 days, similar to a convective turnover time in the
mid-convection zone. In Section 4, we will compare the
difference between the two differential rotation profiles
shown in Figure 3 on flux tube evolution. We will often

Case Parameters
T0 TEQ, vφ0 = 0, Rad. Heat.
TL TEQ, vφ0 = vφℓ, Rad. Heat.
ATL TEQ, vφ0 = vφℓ, Adiabatic
THE TEQ, vφ0 = vφhe, Rad. Heat.
M MEQ, Rad. Heat.
f Fast Diff. Rot., ∆Ω/Ω0 ∼ 22%
s Slow Diff. Rot., ∆Ω/Ω0 ∼ 2%
C indicates convective field

Table 1
Flux tube simulation parameters. Those in TEQ have a density
deficit following Eq. 7, with an internal azimuthal speed (1)

vφ0 = 0 co-rotating with Ω0, (2) vφ0 = vφℓ co-rotating with the
local longitudinal velocity v̂φ corresponding to either the fast or
slow differential rotation profile, or (3) vφ0 = vφhe, the azimuthal

velocity required for the flux tube to be in horizontal force
equilibrium following Eq. 12. Those in MEQ have a neutral
buoyancy and a prograde vφ0 following Moreno-Insertis et al.

(1992). Flux tubes evolve either with radiative heating following
Eq. 6 or adiabatically such that dS/dt = 0. The presence of an

applied velocity field (see Sec. 2.3) is represented by C.

refer to the two profiles as fast (f) and slow (s), corre-
sponding to angular velocity contrasts ∆Ω/Ω0 of ∼22%
and ∼2%, respectively.
For simplicity in referring to a set of simulations with

particular initial conditions, we have a adopted a nam-
ing scheme given in Table 1. For example, the Case
ATLf simulations discussed briefly in Section 3.2 refer to
flux tubes that evolve adiabatically (A), are initially in
thermal equilibrium (T), and have an internal azimuthal
speed vφ0 corresponding to the local longitudinal veloc-
ity v̂φ of the fast differential rotation profile (Lf). The
Case TLsC simulations discussed in Section 4 correspond
to flux tubes that evolve with the influence of radiative
heating, where the tube is initially in thermal equilib-
rium (T) and co-rotating with the slow differential rota-
tion profile (Ls). The application of the suffix C indicates
the presence of time-varying convective flows (C), where
the applied longitudinal velocity profile v̂φ always corre-
sponds to either the slow or fast profile as indicated.

3. FLUX TUBES IN A QUIESCENT CONVECTIVE
INTERIOR

3.1. Dynamic Evolution: Toward Horizontal Force
Balance

Before we examine the results from flux tube simula-
tions allowed to evolve in a convective flow field, it is
instructive to first study how axisymmetric flux tubes
evolve in the quiescent interior of a fully convective star.
Figure 4 depicts the rise of two low latitude, Case T0 flux
tubes with initial magnetic field strengths and depths of
(a) B0 = 30 kG, r0 = 0.5R, and (b) B0 = 200 kG,
r0 = 0.75R. The most striking feature is the parallel mo-
tion of the flux tube to the rotation axis.
There are four main forces that govern flux tube evo-

lution: buoyancy, magnetic tension, aerodynamic drag,
and the Coriolis force. The initial condition of TEQ ren-
ders the flux tube buoyant. An inward directed (toward
rotation axis) magnetic tension (curvature) force FT par-
tially balances the horizontal component of the radially
directed buoyancy force FB. The comparative magni-
tude of these two forces varies with depth r and latitude
θ. The initial ratio of the horizontal components of the

Azimuthal 
velocity

-(= 0.75R

-(= 0.5R

100 kG60 kG30 kG

Sun, '( = 2° − 40°

based on Weber+ 2013 

based on Weber & Browning 2016 
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Summary  
Convection, rotation, and stellar structure are all important contributing factors 

to the overall trend of flux emergence.

This work is a step toward linking magnetic flux emergence, convection, and dynamo action along the lower end of the main sequence.

• Convection modulates flux 
emergence

• Fluid motions both suppress and 
promote the rise of magnetism

• Convection introduces a statistical 
spread in emergence properties

1 Ω⊙ 3 Ω⊙

• Due to the Coriolis force, rapid 
rotation:
• Lengthens the rise times
• Leads to poleward emergence
• Increases tilt angle

Fully Convective M dwarf Solar
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Fig. 1.— 30 kG flux tubes initiated at θ0 = 6◦, corresponding to Case TLfC (ensemble 3)

in Weber & Browning 2016. The flux tube initial configuration is show in red, and once
reaching the simulation upper boundary in black. The azimuthal axis has been rotated so

the apex of the tube at the upper boundary is on the right-hand side. Upper and lower
mesh spheres represent 0.95R and the initial radius r0 of the flux tube, respectively. (Left)

initiated at 0.5R, (Center) initiated at 0.75R, (Right) same as center image, except the flux
tube is not given a cross-sectional extent.

Fig. 2.— 100 kG flux tubes initiated at θ0 = 5◦ in temperature equilibrium and co-rotating

with the star (Ω=2.6×10−6 rad s−1). Upper and lower mesh spheres represent 0.95R and
the base of the convection zone, respectively. (Left) 0.4M⊙, (Center) 0.5M⊙, (Right) 0.6M⊙.
Evolution of the 30 kG flux tubes are similar in trajectory.
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Fig. 3.— Flux tubes initiated at θ0 = 5◦ in mechanical force equilibrium. The azimuthal
axis has been rotated so the apex of the tube at the upper boundary is on the right-hand
side. Upper and lower mesh spheres represent 0.95R and the base of the convection zone,

respectively. (Top) 30 kG flux tubes, (Bottom) 100 kG flux tubes. (Left) 0.4M⊙, (Center)
0.5M⊙, (Right) 0.6M⊙. All 100 kG tubes shown here have developed one buoyant loop. The

30 kG flux tubes develop one buoyant loop in the 0.4M⊙ star, and two loops in the 0.5 and
0.6M⊙. It is likely that convective motions will modulate the shape of especially the 30 kG
flux tubes, removing any preference for these low order m=1 and m=2 unstable modes (i.e.

the number of buoyant loops will be determined by the nature of the convection rather than
the preferred buoyancy instabilities). Questions: Is there a significant (observable) difference

in emergence pattern depending on whether tubes initiate in temperature equilibrium versus
mechanical force equilibrium? Will convective motions normalize this effect or amplify it?

What about rotation rate?

• Tendency for polar flux emergence 
in M dwarfs, unlike in solar-like stars

• Increased density in M dwarfs leads 
to longer rise times

• Assumptions about flux tube 
generating region (i.e. tachocline or 
not) has consequences for flux 
emergence


