Simulations of Flux Emergence in Cool Stars: What's Convection, Rotation, and Stellar Structure got to do with it?

Maria Weber^{1,2}, Matthew Browning³, Nicholas Nelson⁵, Yuhong Fan⁶, Mark Miesch⁷, Ben Brown^{8,9}, ⁴Suzannah Boardman, ⁴Joshua Clarke, ⁴Samuel Pugsley, ⁴Edward Townsend

¹University of Chicago, ²Adler Planetarium, ³University of Exeter, ⁴former Mphys students at the University of Exeter, ⁵California State University, Chico, ⁶HAO/NCAR, ⁷NOAA, ⁸LASP, ⁹Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder

Convection modulates flux emergence

Sun-like stars

Weber+ 2011, 2013a, 2013b Weber & Fan 2015

> Convection & magnetic buoyancy work in concert to promote flux emergence

- Tilt Angle Direction of Rotation adapted from Schrijver & Zwaan 2000 **TFT+convection** 200 -10²² Mx Simulation data * Gaussian fit 15 – 100 kG Adiabatic Non-Adiabatic 150 Number 100 50 Weber & Fan 2015 -200 20 40 Tilt Angle (degrees) Nelson+ 2014 Dynamogenerated loops 20 Wreath Tilt (degrees)
- Downflows naturally induce loops $\sim 15^{\circ} 20^{\circ}$ apart
- Convection introduces a statistical spread in tilt angles

Convection can also suppress flux emergence

Weber & Browning 2016, Weber+ 2017

- The global rise of TFTs is more strongly suppressed by convective flows when the flux tube is initiated:
 - in the deeper interior
 - at lower latitudes
 - with a weaker magnetic field strength

Rotation alters emergence properties

• Due to the Coriolis force, more rapid rotation:

- Lengthens the rise time
- Leads to poleward deflection
- Increases tilt angles

Stellar structure impacts emergence latitudes and more

- Unlike solar case, in M dwarf there is a tendency for high latitude emergence (> 30°)
- Exceptions when flux tubes initiated closer to the surface and of sufficiently weak $(\leq 30 \text{ kG})$ or strong field strengths $(\geq 200 \text{ kG})$
- Increased density in M dwarfs leads to longer flux tube rise times by $\leq 10x$

 Assumption of flux tube generating region, and thereby initial thermodynamic properties, matter

Summary

Convection, rotation, and stellar structure are all important contributing factors to the overall trend of flux emergence.

- Convection modulates flux
 emergence
- Fluid motions both suppress and promote the rise of magnetism
- Convection introduces a statistical spread in emergence properties

- Due to the Coriolis force, rapid rotation:
 - Lengthens the rise times
 - Leads to poleward emergence
 - Increases tilt angle

- Tendency for polar flux emergence in M dwarfs, unlike in solar-like stars
- Increased density in M dwarfs leads to longer rise times
- Assumptions about flux tube generating region (i.e. tachocline or not) has consequences for flux emergence

This work is a step toward linking magnetic flux emergence, convection, and dynamo action along the lower end of the main sequence.