3D mapping of the Solar Neighbourhood with Gaia DR2

Eleonora Zari, H. Hashemi, A. Brown, T. de Zeeuw, K. Jardine

Leiden Observatory

The Gould Belt

- OB type stars cluster in loose groups
 - → OB associations.
- They seem to form a belt.
- Giant molecular clouds are found to be related to the most prominent OB associations.

Formation scenarios:

- oblique impact of high velocity cloud on the Galactic Disk (Comeron & Torra, 1992; Comeron et al., 1998)
- cascades of supernova explosions
- (Poppel, 1997)

Goals

- trace the three dimensional configuration of the Solar Neighbourhood, focusing on young groups and OB associations.

- derive the kinematic properties and the star formation history of the Solar Neighbourhood.

Selecting young stars in Gaia

Colour-magnitude diagram of the Orion region

Selecting young stars in Gaia: UMS

Colour-magnitude diagram of the Orion region

Selecting young stars in Gaia: PMS

Colour-magnitude diagram of the Orion region

Extinction correction

0.1

0

Extinction correction

We select stars younger than 20 Myr

Tangential velocities

Members of clusters and associations share the same spatial velocity + small velocity dispersion.

3D mapping of PMS stars 350. **Galactic Rotation** 500. 175. Z (pc) 0.00 250. -175. -350. ↓ -500. -250. Y (pc) 0.00 350. 175. -250. Z (pc) 0.00 -175. -500, ÷ -500, -350. ⊢ -500. -250. -250. 250. 500. 0.00 Y (pc) X (pc)

0.00

0.00

Х (рс)

250.

250.

500.

500.

Galactic Centre

3D mapping of UMS stars

Ages of PMS stars

(Preliminary) Conclusions

We combined Gaia DR2 astrometry and photometry to study the 3D configuration of young stars within d = 500 pc.

We create 3D density maps of UMS and PMS stars. Check this out! http://galaxymap.org/dr2/

Three main structures are visible: Sco-Cen, Vela, and Orion (and other smaller density enhancements).

We study the ages of PMS sources confirming previous results.

(Preliminary) Conclusions

We combined Gaia DR2 astrometry and photometry to study the 3D configuration of young stars within d = 500 pc.

We create 3D density maps of UMS and PMS stars. Check this out! http://galaxymap.org/dr2/

Three main structures are visible: Sco-Cen, Vela, and Orion (and other smaller density enhancements).

We study the ages of PMS sources confirming previous results.

Is there a Gould Belt?

(Preliminary) Conclusions

We combined Gaia DR2 astrometry and photometry to study the 3D configuration of young stars within d = 500 pc.

We create 3D density maps of UMS and PMS stars. Check this out! http://galaxymap.org/dr2/

Three main structures are visible: Sco-Cen, Vela, and Orion (and other smaller density enhancements).

We study the ages of PMS sources confirming previous results.

Is there a Gould Belt?

We find no evidence of a Belt-like structure!

